Use the Nonlinear Finite-Difference Algorithm with TOL = 10 4 to approximate the solution to the following boundary-value problems. The actual solution is given for comparison to your results. a. y" = e~2y , 1 < x < 2, y(l) = 0, ^(2) = In2; use A = 9; actual solution >'(x) = Inx. b. y" = y'cosx - ylny, 0 < x < |, y(0) = \, y (y) = e: use N = 9; actual solution y(x) = c sin - , . c. y" = - (2(y')3 + y 2 y') secx, | < x < |, y (|) = 2-] '\ y (|) = ^12; use A = 4; actual solution y(x) Vsinx. d. y" = i (l (y')2 - y sinx) , 0 < x < tt, y(0) = 2, yfyr) = 2; use A = 19; actual solution y(x) 2 + sinx.

L35 - 2 Substitution Rule If u = g(x)siaiblinwergein interval I and f is continuous on Ihn ▯ ▯ f(g(x))g (x) dx = f(u)du ▯ ex. (3x +1 ( x + x − 2) dx =